You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 1991Optical properties of short-period Si/Ge superlattices grown on (001) Ge studied with photoreflectance
Si/Ge superlattices provide the possibility to create a novel direct band gap semiconductor. The energies and oscillator strength of interband transitions are strongly affected by strain individual layer thicknesses and superlattice periodicity. We report on photoreflectance (PR) studies of SimGen superattices with a layer thickness ratio m/n1/3 and period lengths of 8 12 and 16 monolayers. Between 1. 9 and 2. 5 eV transitions which are related to the E1 gap are observed for all samples. In the infrared region between 0. 9 and 1. 2 eV superlattice induced interband transitions are observed for Si2Ge6.
The alert did not successfully save. Please try again later.
Ulrich Menczigar, Michael J. Dahmen, Reinhard Zachai, K. Eberl, Gerhard Abstreiter, "Optical properties of short-period Si/Ge superlattices grown on (001) Ge studied with photoreflectance," Proc. SPIE 1361, Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization, (1 March 1991); https://doi.org/10.1117/12.24402