You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 July 1991Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler
In a high J-value scheme (photo-excitation sequence), the authors investigate the characteristics of three-step photo-ionization, through an autoionizing level, of a complex atom using three single-mode pulsed dye lasers. The report covers (1) ion yield dependence on the balance of three laser intensities; (2) AC Stark effect, observed in intermediate excitation; and (3) multi-photon-resonance effect in a stepwise near-resonant excitation. The experimental results are discussed through comparison with the theoretical analyses, that include the effects of magnetic sublevel degeneracy.
Kurt L. Haller andPhilip C. D. Hobbs
"Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler", Proc. SPIE 1435, Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, (1 July 1991); https://doi.org/10.1117/12.44253
The alert did not successfully save. Please try again later.
Kurt L. Haller, Philip C. D. Hobbs, "Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler," Proc. SPIE 1435, Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, (1 July 1991); https://doi.org/10.1117/12.44253