You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 1991Integrated vision system for object identification and localization using 3-D geometrical models
Successful implementation of sensor based robots in dynamic environments will depend largely upon the immunity of the system to incomplete and erroneous sensory information. This paper introduces a six module, 3D model based robot vision system, which utilizes 3D geometric models of the objects expected to appear in a scene and can tolerate incomplete and noisy image features. Object identification is independent of the particular robot pose and object pose, as long as the object is within view of the camera. The system effectively utilizes topology during the object identification phase to reduce the number of mappings between the domain of image features to that of the object features (object models). Geometric information is then employed by the Pose Determination Module to decipher the identified objects unconstrained position and orientation. Continuing experimentation is giving valuable insight into the characteristics of our strategy and has verified the system performance when using incomplete image feature sets.
The alert did not successfully save. Please try again later.
Clint R. Bidlack, Mohan M. Trivedi, "Integrated vision system for object identification and localization using 3-D geometrical models," Proc. SPIE 1468, Applications of Artificial Intelligence IX, (1 March 1991); https://doi.org/10.1117/12.45471