You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 November 1991Electromagnetic scattering from a finite cylinder with complex permittivity
The scattering of electromagnetic radiation from a finite conducting cylinder with complex permittivity at an arbitrary orientation was analyzed using a first order approximation to the iteration technique for the integro-differential equation first developed by Shifrin and later modified by Acquista. The classical Kerker solution for a simple infinite dielectric cylinder was extended to a more physically realistic solution according for a finite length cylinder with complex permittivity by a modified Drude conductivity approach. The diameter of the cylinder is on the order of one wavelength of the incident radiation. The lowest order approximation to the internal field solution for the iteration process is a function of the effective polarized electric field inside the cylinder and the polarization matrix of the scattering medium. The polarization matrix of the cylinder is determined from the electrostatic solution for a finite cylinder in a constant electric field, and is a function of the length to diameter ratio (aspect ratio) and the permittivity of the cylinder. The electrostatic solution for a finite cylinder does not permit a closed solution; therefore the cylinder is approximated by an inscribed ellipsoid which provides a converging analytic expression. Results are compared to published data. The complex frequency dependent permittivity of the cylinder material was modeled using a modified Drude conductivity approach. The effects of typical variations in the length diameter, and bulk conductivity of the cylinder were analyzed for TE, TM, and TEM polarizations.
The alert did not successfully save. Please try again later.
Robert Anderson Murphy, Christos G. Christodoulou, Ronald L. Phillips, "Electromagnetic scattering from a finite cylinder with complex permittivity," Proc. SPIE 1558, Wave Propagation and Scattering in Varied Media II, (11 November 1991); https://doi.org/10.1117/12.49635