You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 April 1992Combining evidence from multiple views of 3-D objects
We summarize a recently developed modular neural system which exploits sequences of 2D views for learning and recognizing 3D objects. An aspect network is an unsupervised module of our complete artificial vision system for detecting and learning the view transitions (as the appearance of a rotating object changes), and for later recognizing objects from sequences of views. By processing sequences of views, the system accumulates evidence over time, thereby increasing the confidence of its recognition decisions. Also, when new views are revealed following views recognized previously by an aspect network during the course of observation, the new views and view-transitions are used to refine the evolving 3D object representation automatically. Recognition is possible even from novel (previously unexperienced) view sequences. The objects used for illustration are model aircraft in flight. The computations are formulated as differential equations among analog nodes and synapses to model the temporal dynamics explicitly.
The alert did not successfully save. Please try again later.
Michael Seibert, Allen M. Waxman, "Combining evidence from multiple views of 3-D objects," Proc. SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures, (30 April 1992); https://doi.org/10.1117/12.57921