You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 1992Near-infrared laser diodes in monitoring applications
Absorption and fluorescence spectroscopy has proven to be a valuable analytical tool for environmental and process monitoring. Several publications have addressed different spectroscopic applications related to process monitoring. Since most chemicals absorb in the UVIVis part of the spectrum, the majority of laser applications utilize this shorter wavelength region. Nevertheless, the utilization of the longer wavelength part of the electromagnetic spectrum may be advantageous due to its relatively low interference. The environmental and process monitoring applications of this spectral region may be especially advantageous if semiconductor lasers are utilized as light sources. Laser diodes have all the properties of other types of lasers with the added benefits of compactness, low power consumption, low cost and long lifetime. However, to
utilize this spectral region for environmental or process monitoring applications, appropriate near-infrared (NIR) absorbing probe molecules need to be employed. These probes may be used to determine analytical properties important for environmental or process monitoring applications, e.g., pH, oxygen concentration, metal ion determinations, solvent hydrophobicity, just to mention a few. These NIR probes may be incorporated into polymers to form a stable probe
arrangement for convenient monitoring using semiconductor lasers. The utility can be further enhanced using fiber optics. In this paper the use of MR absorption and fluorescence spectroscopy for monitoring applications will be demonstrated.
The alert did not successfully save. Please try again later.
Gabor Patonay, Jyh-Myng Zen, Tibor Czuppon, "Near-infrared laser diodes in monitoring applications," Proc. SPIE 1637, Environmental and Process Monitoring Technologies, (1 May 1992); https://doi.org/10.1117/12.59333