You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 June 1992Learning edge-defining thresholds for local binary segmentation
Selecting a globally effective threshold to define edges for local binary thresholding and segmentation of images presents major problems given the significant variability in intensity and edge statistics from image to image and study to study. Previously reported results of applying binary local thresholding have depended on the careful empirical choice of a threshold range adapted to a particular class of images. We have developed two new systematic methods that learn the edge-defining threshold from the gradient image generated by applying a gradient operator. The first method minimizes a criterion function, and the second takes advantage of local constancy properties of the intensity threshold as a function of a selected edge-defining threshold. An edge-defining threshold is then obtained for each sub- image, and a global threshold derived from them for the whole image. Experiments with MR images from phantoms and various human and animal studies have shown the effectiveness of this approach.
The alert did not successfully save. Please try again later.
Leiguang Gong, Casimir A. Kulikowski, Reuben S. Mezrich M.D., "Learning edge-defining thresholds for local binary segmentation," Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, (26 June 1992); https://doi.org/10.1117/12.59571