You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 September 1992Thermal design optimization of a segmented GFRP primary reflector for a submillimeter telescope
Results are presented of a thermal design optimization study of the segmented GFRP primary reflector of the earth-orbiting Submillimeter Imager and Line Survey telescope. The paper examines the thermal requirements of the primary reflector and the thermal environment of the telescope and describes the thermal design of the primary reflector. Particular attention is given to the geometric math model and the thermal math model of the telescope. A summary for the steady-state thermal performance of the optimized design is presented, showing that the optimized design has reduced, by an order of magnitude, structural spatial temperature gradients, which were earlier shown to be the most significant obstacle in maintaining the required telescope figure accuracy.
The alert did not successfully save. Please try again later.
Glenn T. Tsuyuki, Eri J. Cohen, "Thermal design optimization of a segmented GFRP primary reflector for a submillimeter telescope," Proc. SPIE 1690, Design of Optical Instruments, (16 September 1992); https://doi.org/10.1117/12.138002