You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 December 1992Assessment of HgCdTe and GaAs/GaAlAs technologies for LWIR infrared imagers
Imagery of long wavelength infrared HgCdTe and GaAs quantum well staring arrays in size 128 X 128 has been demonstrated. In this paper, we compare detector array performance characteristics, discuss the natural and technological limitations of both technologies and identify the improvements likely to be made in the near future. At this stage of feasibility demonstration in the spectral band 8 - 10 micrometers , the effective quantum efficiency in GaAs FPAs is 4% compared to 60% for HgCdTe and the responsivity is 0.08 A/W compared to 4.5 A/W. This value of 0.08 A/W is significantly below the value 2 A/W reported for single quantum well infrared photodetectors (QWIP) detectors. The peak detectivities and NE(Delta) T at 78 K are (5 X 109 cm (root)Hz/W, 0.037 K) and (2 X 1011, 0.005 K) for QWIP and HgCdTe, respectively. The residual nonuniformities after two-point correction are < 0.01% for QWIP arrays and 0.012% for HgCdTe. Crosstalk is currently unsatisfactory in QWIP detector arrays, but design concepts can be used to reduce this effect. For terrestrial imaging, GaAs quantum well detector arrays most likely will need to operate at temperatures below 80 K from fundamental considerations; HgCdTe detector arrays are background limited at operating temperatures <EQ 90 K. Since cooling can drive cost and reliability, and since significant progress has been made in producing high quality HgCdTe detector arrays with good yield, it is unlikely that HgCdTe will be displaced by this technology for terrestrial applications. For low background space applications at (phi) b <EQ 1012 ph/cm2-sec, QWIP detectors at 40 K are background limited. This observation plus their radiation hard characteristics suggest a possible niche in strategic applications.
The alert did not successfully save. Please try again later.
Roger E. DeWames, Jose M. Arias, Lester J. Kozlowski, G. M. Williams, "Assessment of HgCdTe and GaAs/GaAlAs technologies for LWIR infrared imagers," Proc. SPIE 1735, Infrared Detectors: State of the Art, (10 December 1992); https://doi.org/10.1117/12.142561