Paper
23 November 1992 Neutron reflectometry study of thermally induced boron diffusion in amorphous elemental boron
Gregory S. Smith, William A. Hamilton, Michael R. Fitzsimmons, Shenda M. Baker, Kevin M. Hubbard, Michael Nastasi, Juhani P. Hirvonen, Thomas G. Zocco
Author Affiliations +
Abstract
We have begun a series of neutron reflectometry studies to investigate atomic diffusion behavior in both elemental boron and refractory transition-metal borides. In this paper, we report on the results for boron-atom self-diffusion in amorphous elemental boron. The samples used for the measurements were thin-film bilayer structures consisting of alternating layers of isotopically enriched 10B and 11B, deposited by electron-beam evaporation. The reflectometry studies were performed with a beam of pulsed neutrons having a broad thermal spectrum incident on the samples at an angle of approximately 1.00 degree(s). Specularly reflected neutrons were detected as a function of their time-of-flight with a position-sensitive detector. This data was reduced to obtain a plot of the reflectivity vs. the perpendicular wavevector. Because of the different nuclear potentials for the two boron isotopes, an interference pattern was observed, analogous to those obtained by X-ray measurements on samples with a modulated index of refraction. Reflectivity profiles were measured and analyzed as a function of annealing time for temperatures of 360 degree(s)C and 400 degree(s)C. Variations in the interference patterns were then used to determine the diffusion coefficient, D, at 360 degree(s)C, and hence the intrinsic diffusion parameters. A typical equilibrium result was determined to be D approximately 10-1 angstroms2s, measured at an annealing temperature of 360 degree(s)C. The measured diffusion constants are inconsistent with the high melting temperature of elemental boron, but are consistent with measured diffusion constants in other amorphous thin films.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gregory S. Smith, William A. Hamilton, Michael R. Fitzsimmons, Shenda M. Baker, Kevin M. Hubbard, Michael Nastasi, Juhani P. Hirvonen, and Thomas G. Zocco "Neutron reflectometry study of thermally induced boron diffusion in amorphous elemental boron", Proc. SPIE 1738, Neutron Optical Devices and Applications, (23 November 1992); https://doi.org/10.1117/12.130635
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Diffusion

Interfaces

Boron

Data modeling

Reflectivity

Scattering

Reflectometry

Back to Top