You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Theoretical performances of stationary Fourier spectrometers without mechanical scanning are compared with the performance of a scanning Fourier spectrometer. In spectrometers employing amplitude-splitting interferometers the reduction of fringe visibility, due to the extended source, can be avoided resulting in high optical throughput. In a wave-front-splitting interferometer the fringe contrast depends on the size of the source. However, the wave-front-splitting double-mirror spectrometer avoids the use of a beam splitter and forms an instrument especially suited for the detection of broad band radiation. Noise characteristics, spectral response, and resolving power of the double-mirror spectrometer are theoretically considered and measured. Due to the charge coupled device based detection the sensor characteristics affect the performance of stationary spectrometers. By background subtraction the effect of detection non-uniformity can be radically reduced increasing the signal-to-noise ratio and resolution of the spectrometer. The maximum resolving power reached in measuring the spectra of two lasers was 1600.The stationary spectrometer is applicable to a wide range of measurements ranging from recording temporally variant wide-band radiation to monitoring the wavelength of lasers.
The alert did not successfully save. Please try again later.
M. Leena Junttila, "Stationary Fourier spectrometer," Proc. SPIE 1755, Interferometry: Techniques and Analysis, (5 February 1993); https://doi.org/10.1117/12.140766