You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 December 1992Solution of the recirculant multilayer graph problem using compensated simulated annealing
Stochastic simulated annealing (SSA) is a popular method for solving optimization functions in which the objective function has multiple minima. Not only can SSA find minima, but it has been proven to converge (under certain conditions) to the global minimum. The principal drawback to SSA has been its convergence rate. In order to preserve the conditions of the convergence proof, the algorithm must be run so slowly as to be impractical for many applications. In this paper, an extension to SSA is described which allows the user to provide additional a priori information to the algorithm which may allow much more rapid convergence. The new method, called `compensated simulated annealing' (CSA) is also guaranteed to converge. A problem of finding a minimum path through a recurrent multilayer graph is described. Then a practical motivating application from medical imaging is presented. The graph structure is used to model the boundary of an artery in an intra-arterial ultrasound image. The optimization problem is posed and solved by SSA and CSA as a means of comparing the two methods. The CSA approach is shown to converge significantly faster than SSA.
The alert did not successfully save. Please try again later.
Wesley E. Snyder, Terri Johnson, David M. Herrington, Griff L. Bilbro, "Solution of the recirculant multilayer graph problem using compensated simulated annealing," Proc. SPIE 1766, Neural and Stochastic Methods in Image and Signal Processing, (16 December 1992); https://doi.org/10.1117/12.130851