You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 February 1993Quadratic electroabsorption studies of molecular motion in dye-doped polymers
This paper reports on quadratic electroabsorption studies of thin-film solid solutions of squarylium dye molecules in poly(methylmethacrylate) polymer with the aim of understanding the role of electronic and reorientational mechanisms in the third-order nonlinear-optical susceptibility. We present a generalized theory of the quadratic electrooptic response that includes both electronic mechanisms and molecular reorientation and show that the ratio of two independent third-order susceptibility tensor components, namely (chi) (3)3333/(chi) (3)1133, determines the relative contribution of each mechanism. Based on these theoretical results, we have designed and built an experiment that determines this ratio as a function of temperature and wavelength. Results show that at room temperature and near the first electronic transition wavelength, the response is dominated by the electronic mechanism, and that the reorientational contribution dominates when the sample is heated above its glass transition temperature. Furthermore, results show that, off-resonance, the sign of the imaginary part of the third-order susceptibility is positive. Quadratic electroabsorption is thus shown to be a versatile tool for measuring the imaginary part of the third-order nonlinear-optical susceptibility which yields information about the interaction of polymer and dopant molecule.
The alert did not successfully save. Please try again later.
Constantina Poga, Mark G. Kuzyk, Carl W. Dirk, "Quadratic electroabsorption studies of molecular motion in dye-doped polymers," Proc. SPIE 1775, Nonlinear Optical Properties of Organic Materials V, (25 February 1993); https://doi.org/10.1117/12.139223