You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 September 1992New approach to 3-D registration of multimodality medical images by surface matching
Multimodality images obtained from medical imaging systems such as computed tomography (CT), magnetic resonance (MR) imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT), generally provide complementary characteristic and diagnostic information. Synthesis of these image data sets into a single composite image containing these complementary attributes in accurate registration and congruence would provide truly synergistic information about the object(s) under examination. We have developed a new method which produces such correlation using parametric Chamfer matching. The method is fast, accurate, and reproducible. Surfaces ar initially extracted from two different images to be matched using semi-automatic segmentation techniques. These surfaces are represented as contours with common features to be matched. A distance transformation is performed for one surface image, and a cost function for the matching process is developed using the distance image. The geometric transformation includes three- dimensional translation, rotation, and scaling to accommodate images of different position, orientation, and size. The matching process involves searching this multi-parameter space to find the best fit which minimizes the cost function. The local minima problem is addressed by using a large number of starting points. A pyramid multi-resolution approach is employed to speed up both the distance transformation and the multi-parameter minimization processes. Robustness in noise handling is accomplished using multiple thresholds embedded in the multi- resolution search. The algorithm can register both partially overlapped and fragmented surfaces. Manual intervention is generally not necessary. Preliminary results suggest registration accuracy on the order of the voxel size used in the registration process. Computational time scales with the number of matching elements used, with about five minutes typical for 2563 images using a modern desktop workstation.
The alert did not successfully save. Please try again later.
Hongjian Jiang, Richard A. Robb, Kerrie S. Holton Tainter, "New approach to 3-D registration of multimodality medical images by surface matching," Proc. SPIE 1808, Visualization in Biomedical Computing '92, (22 September 1992); https://doi.org/10.1117/12.131078