You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 May 1993Neural networks for mobile robot visual exploration
This work describes the implementation of some of the neural systems that will enable a mobile robot to actively explore and learn its environment visually. These systems perform the real-time extraction of robust visual features, the segmentation of landmarks from the background and from each other using binocular attentional mechanisms, the predictive binocular tracking of landmarks, and the learning and recognition of landmarks from their features. Also described are preliminary results of incorporating most of these systems into a mobile robot called MAVIN, which can demonstrate the visual exploration of simplified landmarks. Finally, we discuss plans for using similar neural strategies to extend MAVIN's capabilities by implementing a biologically plausible system for navigating through an environment that has been learned by exploration. This explorational learning consists of quantizing the environment into orientation-specific place fields generated by the view-based spatial distribution of landmarks, and associating these place fields in order to form qualitative, behavioral, spatial maps.
The alert did not successfully save. Please try again later.
Ivan A. Bachelder, Allen M. Waxman, "Neural networks for mobile robot visual exploration," Proc. SPIE 1831, Mobile Robots VII, (4 May 1993); https://doi.org/10.1117/12.143783