Paper
14 September 1993 How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration
Author Affiliations +
Proceedings Volume 1888, Photon Migration and Imaging in Random Media and Tissues; (1993) https://doi.org/10.1117/12.154649
Event: OE/LASE'93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering, 1993, Los Angeles, CA, United States
Abstract
The time-resolved reflectance of photons from a homogeneous tissue was modeled using a Monte Carlo simulation. The data was then converted by fast Fourier transform (FFT) into the frequency domain. In the frequency domain, the phase, (Phi) , and modulation, M, of collected light from a frequency-modulated light source was determined. A comparison of Monte Carlo and diffusion theory was made for various separation distances between the source and collector on the tissue surface. The results showed that Monte Carlo and diffusion theory agreed in the time domain only for times larger than 500 ps after injection of an impulse of photons. In the frequency domain, Monte Carlo and diffusion theory agreed only if the probe separation, r, was at least 2 cm apart for (mu) s' equals (mu) s(1 - g) equals 5 cm-1, or in dimension less units r(mu) s' > 10. The effect of buried absorbed is also tested in the time and frequency domains. A semi-infinite volume of absorber is placed at 0, 3 mm, 6 mm, or (infinity) from the surface of a nonabsorbing tissue. The presence of a deep absorber on the time and frequency domain data show that attenuation of longer pathlength photons causes the phase of collected photons to reduce and the modulation of collected photons to increase. Both effects are indicative of the net shorter pathlength of the ensemble of collected photons.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Steven L. Jacques, Andreas H. Hielscher, Lihong V. Wang, and Frank K. Tittel "How source/collector placement and subsurface absorbing layer affect time-resolved and phase/modulation-resolved photon migration", Proc. SPIE 1888, Photon Migration and Imaging in Random Media and Tissues, (14 September 1993); https://doi.org/10.1117/12.154649
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Diffusion

Monte Carlo methods

Modulation

Photon transport

Tissues

Phase shift keying

Natural surfaces

Back to Top