Translator Disclaimer
8 September 1993 DCT quantization matrices visually optimized for individual images
Author Affiliations +
Proceedings Volume 1913, Human Vision, Visual Processing, and Digital Display IV; (1993)
Event: IS&T/SPIE's Symposium on Electronic Imaging: Science and Technology, 1993, San Jose, CA, United States
Several image compression standards (JPEG, MPEG, H.261) are based on the Discrete Cosine Transform (DCT). These standards do not specify the actual DCT quantization matrix. Ahumada & Peterson and Peterson, Ahumada & Watson provide mathematical formulae to compute a perceptually lossless quantization matrix. Here I show how to compute a matrix that is optimized for a particular image. The method treats each DCT coefficient as an approximation to the local response of a visual `channel.' For a given quantization matrix, the DCT quantization errors are adjusted by contrast sensitivity, light adaptation, and contrast masking, and are pooled non-linearly over the blocks of the image. This yields an 8 X 8 `perceptual error matrix.' A second non-linear pooling over the perceptual error matrix yields total perceptual error. With this model we may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrew B. Watson "DCT quantization matrices visually optimized for individual images", Proc. SPIE 1913, Human Vision, Visual Processing, and Digital Display IV, (8 September 1993);

Back to Top