You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 July 1993Effect of coating characteristics on strain transfer in embedded fiber optic sensors
Understanding elastic interactions that occur between an embedded optical fiber and its host matrix is important for implementation of optical strain sensors into aerospace structures. A previously developed analytical model predicted the effects of fiber coating thickness and elastic modulus on the strain transfer from an isotropic matrix to an embedded coated fiber optic. To verify this, a series of tungsten coatings were magnetron sputtered onto bare intrinsic Fabry-Perot sensors that were embedded into a neat epoxy resin block. The block was then compression loaded in the transverse direction to the fiber, and the optical strain response was measured. Comparisons between the responses of both coated and uncoated sensors indicated that the experimental measurements of strain transfer in embedded fiber-optic devices yielded good agreement with the analytical model.
The alert did not successfully save. Please try again later.
John S. Madsen, A. Peter Jardine, Raymond J. Meilunas, A. G. Tobin, Eugene Pak, "Effect of coating characteristics on strain transfer in embedded fiber optic sensors," Proc. SPIE 1918, Smart Structures and Materials 1993: Smart Sensing, Processing, and Instrumentation, (12 July 1993); https://doi.org/10.1117/12.147979