You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 August 1993Comparison approach for wavefront sensors
The hardware building blocks of all contemporary wavefront sensors for astronomical adaptive optics can be described as 'some front end optics, one or more CCD cameras, and a processing computer'. Selection of one of these sensors for a new installation should be based on a comparative cost/performance/risk evaluation. There are four levels of evaluation. First, we can calculate a 'phase error per photon' figure of merit inherent to the optical transformation. Second, we can evaluate the effect of various effects on the noise (precision) and accuracy of the sensors. Third, we can examine the complexity of the optical transformation from non-detectable wavefront to detectable intensity pattern and the concomitant processing complexity to extract the phase from the detected intensity. Finally, we can estimate the engineering difficulties in implementing the desired optical transformation. We suggest that the first level of examination, while providing an important, quantitative performance discriminator, does not provide a basis for sensor selection. The second level of evaluation, often approached qualitatively, suggests possible operational limits for the sensors. The third level suggests hidden difficulties, while the fourth level is perhaps a cost or risk discriminator.
The alert did not successfully save. Please try again later.
Bruce A. Horwitz, "Comparison approach for wavefront sensors," Proc. SPIE 1920, Active and Adaptive Optical Components and Systems II, (25 August 1993); https://doi.org/10.1117/12.152664