You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 June 1993Fully-scaled 0.25-micron bipolar technology using variable shaped electron-beam lithography
The successful application of sub-micron scaling principles to device fabrication involves an integration of tool, resist system, and process control. The precision overlay capability of a modified IBM EL-3 variable shaped beam lithography tool has been used to achieve optimized scaling of a 0.25 micrometers bipolar technology. Although the total device size is strongly coupled to linewidth control and overlay accuracy for all circuit levels, the overlay between the emitter opening and the shallow trench isolation is considered to be the most critical. We report on the integration of an advanced electron beam lithography and resist process capability with an innovative bipolar device technology to achieve emitter coupled logic (ECL) delays of 20.8 ps at a switching current of 1.1 mA. These results demonstrate the feasibility and performance leverage that can be accomplished through the aggressive scaling of conventional bipolar technologies.
The alert did not successfully save. Please try again later.
Philip J. Coane, Kaolin Grace Chiong, Mary Beth Rothwell, James Warnock, John D. Cressler, Fritz J. Hohn, Michael G.R. Thomson, "Fully-scaled 0.25-micron bipolar technology using variable shaped electron-beam lithography," Proc. SPIE 1924, Electron-Beam, X-Ray, and Ion-Beam Submicrometer Lithographies for Manufacturing III, (24 June 1993); https://doi.org/10.1117/12.146502