Paper
31 August 1993 Aliasing as noise: a quantitative and qualitative assessment
Stephen K. Park, Rajeeb Hazra
Author Affiliations +
Abstract
Natural scenes are not band-limited and for most contemporary sampled imaging systems, the (pre-sampling) image formation subsystem frequency response extends well beyond the sampling passband. For these two reasons, most sampled imaging systems -- particularly staring-array systems -- produce aliasing. That is, the sampling process causes (high) spatial frequencies beyond the sampling passband to fold into (lower) spatial frequencies within the sampling passband. When the aliased, sampled image data is then reconstructed, usually by image display, potentially significant image degradation can be produced. This is a well- established theoretical result which can be (and has been, by many) verified experimentally. In this paper we argue that, for the purposes of system design and digital image processing, aliasing should be treated as signal-dependent, additive noise. The argument is both theoretical and experimental. That is, we present a model-based justification for this argument. We demonstrate that our model-based argument leads naturally to system design metrics which quantify the extent of aliasing. And, by illustrating several `aliased component' images, we provide a qualitative assessment of aliasing as noise.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stephen K. Park and Rajeeb Hazra "Aliasing as noise: a quantitative and qualitative assessment", Proc. SPIE 1969, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IV, (31 August 1993); https://doi.org/10.1117/12.154738
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image acquisition

Modulation transfer functions

Image restoration

Imaging systems

Image filtering

Image processing

Spatial frequencies

Back to Top