You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 December 1993Recent advances in the metalorganic molecular beam epitaxy of HgCdTe
A brief review is given of recent results to assess the capability of metalorganic molecular beam epitaxy for the low-temperature growth of high-quality low-carrier-concentration CdTe and HgCdTe alloys. In particular, studies of this technique to produce highly uniform HgCdTe material and the extension of the gas source doping of CdTe and HgCdTe with ethyliodide so as to obtain back-doped electron concentrations from 1015 to 1018 cm-3 are reported. Some preliminary results on the growth of ternary CdTe/HgCdTe superlattices and the p-type doping of CdTe with As will also be presented. The electrical and optical properties of these materials were determined by resistivity and Hall effect, photoluminescence, and IR transmission measurements between 300 and 10 K.
The alert did not successfully save. Please try again later.
Christopher J. Summers, Brent K. Wagner, Rudolph G. Benz II, "Recent advances in the metalorganic molecular beam epitaxy of HgCdTe," Proc. SPIE 2021, Growth and Characterization of Materials for Infrared Detectors, (7 December 1993); https://doi.org/10.1117/12.164950