You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 December 1993Neural modelling of fuzzy set connectives
The paper introduces a neural network-based model of logical connectives. The network consists of two types of generic OR and AND neurons structured into a three layer topology. The specificity of the logical connectives is captured by the network within its supervised learning. Further analysis of the connections of the network obtained in this way provides a better insight into the nature of the connectives for fuzzy sets; in particular the analysis can look at their non-monotomic and compensative properties. Numerical studies including the Zimmermann-Zysno data set illustrate the performance of the network.
The alert did not successfully save. Please try again later.
Kaoru Hirota, Witold Pedrycz, "Neural modelling of fuzzy set connectives," Proc. SPIE 2061, Applications of Fuzzy Logic Technology, (22 December 1993); https://doi.org/10.1117/12.165044