You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 February 1994Application of an aerial image measurement system to mask fabrication and analysis
Application of an Aerial Image Measurement System (AIMSTM) to binary and phase- shift mask fabrication and evaluation is described. The AIMS tool, an optical system which measures the aerial image directly from a mask, provides rapid feedback on lithographic performance for a variety of stepper configurations through modifications of the wavelength, numerical aperture, and illuminator design. The AIMS tool has been applied during the implementation of an alternating phase-shift mask (PSM) fabrication process in order to understand the impact of the etched-quartz sidewall on lithographic performance. AIMS measurements were used to extract the effective phase and transmission as a function of phase- etch depth as well as post-etch treatment condition. A set of basic test structures are proposed which can be used in conjunction with the AIMS tool to automate the extraction of transmission, phase, and second-level overlay for phase-shifting processes such as alternating and attenuating PSM.
The alert did not successfully save. Please try again later.
Richard A. Ferguson, Ronald M. Martino, Russell A. Budd, John L. Staples, Lars W. Liebmann, Derek B. Dove, J. Tracy Weed, "Application of an aerial image measurement system to mask fabrication and analysis," Proc. SPIE 2087, 13th Annual BACUS Symposium on Photomask Technology and Management, (15 February 1994); https://doi.org/10.1117/12.167256