You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 1994Observer models for statistically-defined backgrounds
Investigation of human signal-detection performance for noise- limited tasks with statistically defined signal or image parameters represents a step towards clinical realism. However, the ideal observer procedure is then usually nonlinear, and analysis becomes mathematically intractable. Two linear but suboptimal observer models, the Hotelling observer and the non- prewhitening (NPW) matched filter, have been proposed for mathematical convenience. Experiments by Rolland and Barrett involving detection of signals in white noise superimposed on statistically defined backgrounds showed that the Hotelling model gave a good fit while the simple NPW matched filter gave a poor fit. It will be shown that the NPW model can be modified to fit their data by adding a spatial frequency filter of shape similar to the human contrast sensitivity function. The best fit is obtained using an eye filter model, E(f) equals f1.3 exp(-cf2) with c selected to give a peak at 4 cycles per degree.
The alert did not successfully save. Please try again later.
Arthur E. Burgess, "Observer models for statistically-defined backgrounds," Proc. SPIE 2166, Medical Imaging 1994: Image Perception, (1 April 1994); https://doi.org/10.1117/12.171739