You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 December 1994Classification of multisource imagery based on a Markov random field model
In this paper, a general model for multisource classification of remotely sensed data based on Markov random fields (MRF) is proposed. A specific model for fusion of optical images, synthetic aperture radar (SAR) images, and GIS (geographic information systems) ground cover data is presented in detail and tested. The MRF model exploits spatial class dependency context between neighboring pixels in an image, and temporal class dependency context between the different images. The performance of the specific model is investigated by fusing Landsat TM images, multitemporal ERS-1 SAR images, and GIS ground-cover maps for land- use classification. The MRF model performs significantly better than a simpler reference fusion model it is compared to.
The alert did not successfully save. Please try again later.
Anne H. Schistad Solberg, Torfin Taxt, "Classification of multisource imagery based on a Markov random field model," Proc. SPIE 2315, Image and Signal Processing for Remote Sensing, (30 December 1994); https://doi.org/10.1117/12.196730