You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 February 1995Role of delocalized exciton states of light-harvesting pigments in excitation energy transfer in natural photosynthesis
Photosynthesis is an extremely efficient converter of light into chemical energy, with an observed quantum yield for primary photochemistry approximately 90%. To achieve this the photosynthetic apparatus must be highly optimized, and some of the design principles that may be involved have been suggested. The role of delocalized exciton states of light-harvesting pigments in the energy transfer process has been considered by mathematical simulation of the light-harvesting process in model systems. Namely, it has been shown that aggregation of antenna pigments (allowing to consider each aggregate as a supermolecule) is biologically expedient, as an efficient strategy for light harvesting in photosynthesis. The question of whether this design principle is realized in a natural antenna has been examined for the 3D chlorosomal superantenna of green bacteria with the hole-burning spectroscopy. Spectral hole burning studies of intact cells of green bacteria Chlorobium phaeovibriodes. Chloroflexus aurantiacus and Chlorobium limicola have proven that the Qy- absorption system of antenna bacteriochlorophylls e or c (BChl e or BChl c) should be interpreted in terms of the delocalized exciton level structure of an aggregate. For the first time the 0-0 transition band of the lowest exciton state of BChl e and BChl c aggregates has been directly detected as the lowest energy inhomogeneously broadened band of the 1.8 K near-infrared excitation spectrum. These lowest energy bands have different spectral position of their maximums: approximately 739 nm in C.phaeovibriodes (BChl e band), approximately 752 nm in C.aurantiacus (BChl c band) and approximately 774 nm in C.limicola (BChl c band) cells. However, these bands display a number of fundamentally similar spectral features: (1) The magnitude of inhomogeneous broadening of these bands is 90 - 100 cm-1; (2) The width of each band is 2 - 3 times less than that of the monomeric BChl c (or BChl e) in vitro at 5 K; (3) Each band, being the lowest energy exciton band, manifests itself as the longest wavelength band in the circular dichroism spectrum; (4) At the wavelength of the maximum of each band for all the three species, the amplitude of the preburnt excitation spectrum makes up 20% of the maximum amplitude of the spectrum; (5) The weak exciton-phonon coupling of optical transitions corresponding to these bands is also a common feature. So, the hole spectra measured for C.aurantiacus, C.limicola and C.phaeovibrioides cells were shown to be consistent with the BChl c (and BChl e) organization in the chlorosomes as strongly exciton- coupled BChl c (or BChl e) aggregates, i.e. the delocalized excitons are in fact involved in the energy transfer process within these antennae. Thus, aggregation of the pigment molecules in natural light-harvesting antennae should be considered as one of the optimizing factors ensuring high efficiency of excitation energy transfer from antenna to reaction center.2362
Zoya Fetisova,Koit Mauring, andAlexandra Taisova
"Role of delocalized exciton states of light-harvesting pigments in excitation energy transfer in natural photosynthesis", Proc. SPIE 2362, International Conference on Excitonic Processes in Condensed Matter, (9 February 1995); https://doi.org/10.1117/12.201450
The alert did not successfully save. Please try again later.
Zoya Fetisova, Koit Mauring, Alexandra Taisova, "Role of delocalized exciton states of light-harvesting pigments in excitation energy transfer in natural photosynthesis," Proc. SPIE 2362, International Conference on Excitonic Processes in Condensed Matter, (9 February 1995); https://doi.org/10.1117/12.201450