You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 April 1995Characterization of excimer lamp photo-deposited ultrathin oxynitride films
Excimer lamp deposited ultra-thin (< 250 angstrom) silicon dioxide and silicon oxynitride films were characterized using spectroscopic ellipsometry (SE) and Fourier transform infrared (FTIR) spectroscopy. SE analysis of the photo-deposited SiO2 films revealed no variation in the refractive index (n) of the films for deposition temperatures of 200 degree(s)C and 300 degree(s)C. Using a Bruggeman effective medium approximation (EMA), SE analysis was employed to determine both the silicon oxynitride layer thicknesses and compositions as a function of deposition temperatures and gas ratio, defined as (N2O/(N2O + NH3)). From this analysis the optical properties of the silicon oxynitride thin films were extracted. It was observed that the refractive index for the 200 degree(s)C and 300 degree(s)C series of samples decreased from n equals 1.81 to 1.46 and n equals 1.72 to 1.46 respectively as a function of increasing gas flow ratio. FTIR analysis revealed spectral features characteristic of Si-O, Si-N, Si-H and N-H bonding. The most significant feature in all recorded spectra was a mixed spectral absorption band ranging from 800 cm-1 to 1300 cm-1. Both the integrated band area and peak wavenumber of this absorption band was found to be sensitive to the degree of nitridation and layer thickness of the thin films. The N-H stretching bond density was calculated from the N-H peak at 3360 cm-1 using appropriate calibration factors. A slight decrease in the N-H bond density with increasing gas flow rate was observed. This variation in bond density was significantly less than that observed for PECVD silicon oxynitride films.
The alert did not successfully save. Please try again later.
S. Lynch, Gerard M. O'Connor, Gabriel M. Crean, J. Y. Zhang, Zsolt Geretovszky, Philippe Bergonzo, Ian W. Boyd, "Characterization of excimer lamp photo-deposited ultrathin oxynitride films," Proc. SPIE 2403, Laser-Induced Thin Film Processing, (10 April 1995); https://doi.org/10.1117/12.206261