You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
The Optical Physics Division of the Phillips Laboratory with support from the DoE Atmospheric Radiation Measurement (ARM) Program is developing a state-of-the-art line-by- line atmospheric radiative transfer model as the successor by FASCODE. The goal of this project is to create a computationally efficient model which contains the most up-to-date physics. The new model, known as FASCODE for the Environment, or `FASE', will combine the best features of FASCODE and LBLRTM, the DoE's standard radiative transfer model. FASE will also contain new features such as new cross-sections for heavy molecules, an improved solar irradiance model, and improvements to the Schumann-Runge bands and continuum. The code will be optimized for vectorized and/or parallel processing, put under configuration control for easy maintenance, and will be structured into separate modules for each function: atmospheric profiles, layer optical properties, radiative transfer, multiple- scattering, etc. This modular structure will allow for increased flexibility and easy customization of the code for specialized applications, such as a forward model for iterative inversion algorithms. Ease-of-use will be enhanced with improved input control structures and documentation to accommodate the needs of novice and advanced users. This paper addresses changes which have been made to FASCODE and LBLRTM to create FASE, and gives an overview of the modular structure and its capabilities.
The alert did not successfully save. Please try again later.
Hilary E. Snell, Jean-Luc Moncet, Gail P. Anderson, James H. Chetwynd Jr., S. Miller, Junfeng Wang, "FASCODE for the environment (FASE)," Proc. SPIE 2471, Atmospheric Propagation and Remote Sensing IV, (15 June 1995); https://doi.org/10.1117/12.211917