You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 June 1995Reciprocal path scattering due to the combination of atmospheric turbulence and rough surfaces
The topic of enhanced backscattering (EBS) from random media has generated considerably research interest for the last two decades in Eastern Europe and for the last decade in the West. Two distinct scattering phenomena that are unique to scattering by random media are capable of producing enhanced backscatter: coherent reciprocal path scattering (RPS) and incoherent random focusing events. When coherent RPS is responsible for EBS, the maximum enhancement factor is two. Several theoretical models exist for EBS from random rough surfaces and by atmospheric turbulence individually; however, no theoretical model exists for the EBS due to the combination of rough surface and atmospheric turbulence enhancement. Simple geometrical optics models are presented that illustrate the EBS due to RPS by the combination of saturated atmospheric turbulence and a rough surface target upon a monostatic laser radar system.
The alert did not successfully save. Please try again later.
Robert Anderson Murphy, Ronald L. Phillips, "Reciprocal path scattering due to the combination of atmospheric turbulence and rough surfaces," Proc. SPIE 2471, Atmospheric Propagation and Remote Sensing IV, (15 June 1995); https://doi.org/10.1117/12.211954