You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 June 1995High-performance linear arrays of YBa2Cu3O7 superconducting infrared microbolometers on silicon
Single detectors and linear arrays of microbolometers utilizing the superconducting transition edge of YBa2Cu3O7 have been fabricated by micromachining on silicon wafers. A D* of 8 +/- 2 X 109 cm Hz1/2/watt has been measured on a single detector. This is the highest D* reported on any superconducting microbolometer operating at temperatures higher than about 70 K. The NEP of this device was 1.5 X 10-12 watts/HzHLF at 2 Hz, at a temperature of 80.7 K. The thermal time constant was 105 msec, and the detector area was 140 micrometers X 105 micrometers . The use of batch silicon processing makes fabrication of linear arrays of these detectors relatively straightforward. The measured responsivity of detectors in one such array varied by less than 20% over the 6 mm length of the 64-element linear array. This measurement shows that good uniformity can be achieved at a single operating temperature in a superconductor microbolometer array, even when the superconducting resistive transition is a sharp function of temperature. The thermal detection mechanism of these devices gives them broadband response. This makes them especially useful at long wavelengths (e.g. (lambda) > 20 micrometers ), where they provide very high sensitivity at relatively high operating temperatures.
The alert did not successfully save. Please try again later.
Burgess R. Johnson, Marc C. Foote, Holly A. Marsh, "High-performance linear arrays of YBa2Cu3O7 superconducting infrared microbolometers on silicon," Proc. SPIE 2475, Infrared Detectors and Instrumentation for Astronomy, (6 June 1995); https://doi.org/10.1117/12.211293