You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 September 1995New copolymers for applications as organic LEDs
During the past five years, (pi) -conjugated organic polymers, such as poly[p-phenylene vinylene] (PPV) and polythiophenes, have become attractive alternatives to semiconducting materials as light-emitting diodes. Various approaches to tuning emission wavelength have been proposed, such as controlling the conjugation length by employing polymer oligomers or via steric effects in the fully conjugated polymers, or by using substituent effects to fine-tune the band gap. In the present study, we demonstrate that these features can be designed into copolymeric structures in which (pi) -conjugated emitters of carefully controlled length alternate with various non-emitting flexible spacers which improve solubility and thus processibility. These copolymers display predictable emission characteristics which can also be fine-tuned by incorporation of electronic substituent effects.
The alert did not successfully save. Please try again later.
Charles W. Spangler, John W. Thurmond, Hu Li, Mingqian He, Saswati Ghosal, Yue Zhang, Martin K. Casstevens, Ryszard Burzynski, "New copolymers for applications as organic LEDs," Proc. SPIE 2528, Optical and Photonic Applications of Electroactive and Conducting Polymers, (15 September 1995); https://doi.org/10.1117/12.219559