You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 August 1995Versatile anamorphic electronic fingerprinting: design and manufacturing considerations
Many electronic fingerprinting devices are required to have a distortion-free high-contrast imaging capability, with diffraction-limited resolution. That is, no software correction of image distortion is allowed, and all fingerprint scaling correction must be accomplished with optical components. For such systems, a minimum of four key requirements must be satisfied simultaneously in the optical design: (1) Total internal reflection (TIR) at the fingerprinting surface; (2) Optical compensation for producing zero distortion; (3) Variable anamorphic scaling capability in two axes for producing correct image sizing; (4) Diffraction-limited imagery across the entire field of view. In the mechanical design for manufacture and assembly of the imaging system, generally a number of mechanical implementations are needed to provide for each of alignment. Thus a strong interaction between the optical designer, the mechanical engineer, and the marketing company which dictates the system specification is essential all throughout the design process. In this paper we present several optical design principles involved with electronic fingerprinting. A discussion of the Scheimpflug condition, its attendant keystone distortion, tilted object and image planes to assist the correction of distortion, tilted lens elements to assist in the correction of defocus, and variable anamorphic prism pairs (or cylinders) will illustrate how a unified design solution is arrived at for a complex imaging system. Illumination concepts involving TIR and non-TIR approaches are also discussed.
The alert did not successfully save. Please try again later.
David E. Stoltzmann, Lubomir Koudelka, Glenn M. Fishbine, "Versatile anamorphic electronic fingerprinting: design and manufacturing considerations," Proc. SPIE 2537, Novel Optical Systems Design and Optimization, (11 August 1995); https://doi.org/10.1117/12.216375