Paper
8 December 1995 Comprehensive simulation study of the photomask defects printability
Author Affiliations +
Abstract
Optical lithography will continue to be a leading patterning technology for 256 Mb and 1 GB DRAM production. As the device size diminishes, all the links of the technological chain must be significantly improved. Photomask technology then becomes one of the critical issues for the semiconductor industry. It is already admitted that only a combination of PSM technology coupled with OPC and state-of-the-art illumination schemes will allow the printing of 0.18 micrometer patterns using optical lithography. It has been shown that new patterning techniques may significantly degenerate mask defect tolerance. This will certainly require a new look at the mask defects detection and classification. A new 'process window' concept proposed by KLA has been applied to the mask defects printability study. Both conventional (chrome) and phase shifted (half-tone) masks have been examined. OPC corrected layouts were studied with a variety of defect types, sizes, and locations. 'Ideal' vs 'real' (corner rounding) reticles were tested. In addition, the impact of substrate reflectivity and photoresist contrast on defect printability has been determined using full scale 3D simulation. We found that implementing the OPC technique may produce new types of defects, and therefore requires a new defect classification.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Linard Karklin "Comprehensive simulation study of the photomask defects printability", Proc. SPIE 2621, 15th Annual BACUS Symposium on Photomask Technology and Management, (8 December 1995); https://doi.org/10.1117/12.228203
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Photomasks

Reflectivity

Optical lithography

Optical proximity correction

Photoresist materials

3D modeling

Lithography

Back to Top