You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 1996Heat generation of a piezoceramic induced-strain actuator embedded in a glass/epoxy composite panel
The thermal response of a specific piezoceramic induced-strain actuator (the Penn State SPICES 'frame' actuator) was investigated under two conditions: (1) as a free device; and (2) embedded in a woven glass/epoxy composite panel. Actuators were driven at various combinations of electric field strengths and frequencies. Field strengths ranged from 75 kV/m to 1.5 MV/m (10 to 200 Vrms over a 135 micron thickness), while frequencies ranged from 100 Hz to 2000 Hz. The 50-ply composite panel was instrumented with thermocouples at 4 locations through the panel thickness. Temperature measurements were recorded continuously from an initial ambient isothermal state until a steady state temperature distribution was reached. Temperatures increased with frequency and field level, with heat generation roughly proportional to the frequency and to the square of the field level, consistent with a dielectric loss mechanism. The temperature rise at the actuator-composite interface, when driven at 100 Vrms and 500 Hz, was 50 degrees Celsius. The data indicate that self-heating in applications involving a combination of high field levels, high frequencies, and thick composites can result in high internal temperatures, and possibly lead to reduced performance and reliability.
The alert did not successfully save. Please try again later.
George Andre Lesieutre, Lei Fang, Gary H. Koopmann, Suresh P. Pai, Shoko Yoshikawa, "Heat generation of a piezoceramic induced-strain actuator embedded in a glass/epoxy composite panel," Proc. SPIE 2717, Smart Structures and Materials 1996: Smart Structures and Integrated Systems, (1 May 1996); https://doi.org/10.1117/12.239030