You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 April 1996Monitoring and evaluating civil structures using measured vibration
The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.
The alert did not successfully save. Please try again later.
Erik G. Straser, Anne S. Kiremidjian, "Monitoring and evaluating civil structures using measured vibration," Proc. SPIE 2719, Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways, (22 April 1996); https://doi.org/10.1117/12.238830