You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 1996Incorporation of piezoelectric Pb(Zr,Ti)O3 fibers into ceramic/polymer composites
The processing of Pb(Zr,Ti)O3, or PZT, fiber and fiber/polymer composites for transducer applications is discussed. Green PZT fibers, 80 to 100 micrometers in diameter, were formed at Advanced Cerametrics, Inc., using the Viscous Suspension Spinning Process (VSSP). In this process, fine PZT powder is intimately mixed with polymer precursor by high shear mixing. The powder and precursor mixture is spun through a spinneret into a coagulation bath to form fibers. The fibers are washed, dried, and collected on a spool. Yarns containing between 10 and 500 individual fibers were collimated by applying a polymeric sizing to the yarns, and passing the yarns through sizing dies. Yarn bundle tightness and flexibility were controlled by the sizing chemistry. Continuous green yarns were cut to short lengths, or woven in different architectures to create composites with novel microstructures. The short yarns were fired to product PZT straight rods for `pick and place' piezoelectric composites. The woven structures were heat treated and backfilled with polymer to create composites with 1-3, 2-3, and 3-3 connectivity. After heat treatment, the diameter of the individual PZT fibers was 10 to 20 micrometers . Electromechanical characteristics of a number of composites were determined, and will be reported. The PZT VSSP fibers can be used to form fine-scale, large area piezoelectric fiber/polymer composites for use in hydrophones, transducers for medical ultrasonic imaging and non-destructive evaluation, and as sensors and actuators in vibration and noise control.
The alert did not successfully save. Please try again later.
Ahmad Safari, Victor Janas, Bahram Jadidian, Jonathan D. French, Gregory E. Weitz, John E. Luke, Bud Cass, "Incorporation of piezoelectric Pb(Zr,Ti)O3 fibers into ceramic/polymer composites," Proc. SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, (1 May 1996); https://doi.org/10.1117/12.239131