You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 May 1996Real-time landmark-based optical vehicle self-location
This paper presents a system for performing real-time vehicular self-location through a combination of triangulation of target sightings and low-cost auxiliary sensor information (e.g. accelerometer, compass, etc.). The system primarily relies on the use of three video cameras to monitor a dynamic 1 80° field of view. Machine vision algorithms process the imagery from this field of view searching for targets placed at known locations. Triangulation results are then combined with the past video processing results and auxiliary sensor information to arrive at real-time vehicle location update rates in excess of 10 Hz on a single low-cost conventional CPU. To supply both extended operating range and nighttime operational capabilities, the system also possesses an active illumination mode that utilizes multiple, inexpensive infrared LED's to act as the illuminating source for reflective targets. This paper presents the design methodology used to arrive at the system, explains the overall system concept and process flow, and will briefly discuss actual results of implementing the system on a standard commercial vehicle.
Keywords: Machine Vision, Self-Location, Autonomous Vehicles, Infrared Sensing, Position Determination
The alert did not successfully save. Please try again later.
Merrill D. Squiers, Michael P. Whalen, Gary Moody, Charles J. Jacobus, Mark J. Taylor, "Real-time landmark-based optical vehicle self-location," Proc. SPIE 2738, Navigation and Control Technologies for Unmanned Systems, (27 May 1996); https://doi.org/10.1117/12.241082