You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 November 1996In-flight radiometric stability of HYDICE for large and small uniform reflectance targets under various conditions
The in-flight radiometric stability of images formed in a single spectral band of HYDICE has been examined under various conditions. In the first, the stability of the combined response of the on-board calibrator and HYDICE was checked by comparing repeated image acquisitions over small targets, a few pixels in size, and then over a uniform, extended target. For the second condition, a new flat-field calibration of the focal plane was used which improved the radiometric stability. It is shown from these results that radiometric stability and accuracy are closely related to target contrast and size. This has important consequences for the empirical line approach to calibration or reflectance retrieval. The third condition included a pitch in the attitude of the aircraft that introduced a marked banding of the image in the vicinity of the 1.38-micrometers band, which is very sensitive to the presence of cirrus-cloud ice crystals. This is believed to be another form of the `spectral jitter' described in other papers in these Proceedings.
The alert did not successfully save. Please try again later.
Philip N. Slater, Robert W. Basedow, William S. Aldrich, John E. Colwell, "In-flight radiometric stability of HYDICE for large and small uniform reflectance targets under various conditions," Proc. SPIE 2821, Hyperspectral Remote Sensing and Applications, (6 November 1996); https://doi.org/10.1117/12.257178