You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 July 1996Composite-embedded highly birefringent optical fiber strain gauge with zero thermal-apparent strain
We demonstrate temperature-insensitive strain measurement in a carbon fiber composite panel using a sensor based on broad-band interferometry in highly-birefringent optical fiber. The sensing element forms an unbalanced Fabry-Perot cavity in the measurement arm of a tandem interferometer. This is interrogated using an LED source and a scanning Michelson interferometer, producing three distinct interferograms, two of which relate to the group delay (GD) of the eigenmodes of the sensing element, the other providing a zero-OPD reference in the scanning interferometer. We measure the GD of each interferogram by dispersive Fourier-transform spectroscopy. Changes in strain and temperature in the measurement fiber affect the group delays of the sensing interferograms, but do not affect the zero-OPD interferograms, which is therefore used as the origin for group delay measurements. We determine a linear transformation relating the measured group delays to strain and temperature. Inverting this transformation then provides a means of recovering strain and temperature from measurements of group delay. We apply this technique to the simultaneous measurement of strain and temperature in the composite panel. Typical measurement errors are 7 microsecond(s) train and 0.7 K. The measured values are independent, and the strain values show no evidence of thermal-apparent strain.
The alert did not successfully save. Please try again later.
David G. Luke, Roy McBride, Julian D. C. Jones, Peter A. Lloyd, James G. Burnett, Alain H. Greenaway, "Composite-embedded highly birefringent optical fiber strain gauge with zero thermal-apparent strain," Proc. SPIE 2861, Laser Interferometry VIII: Applications, (19 July 1996); https://doi.org/10.1117/12.245167