You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 November 1996Nitrogen snow cleaning inside a large cryogenic telescope
A 50-cm cryogenic mirror at one end of an aluminum telescope was successfully cleaned by nitrogen snow in a series of demonstration tests. The mirror was maintained below 70 Kelvin under vacuum during the cleaning, with a 15 Kelvin cold cap pumping the nitrogen gas to maintain a realistic space environment. The snow was produced by an assembly of 6 nozzles and valves attached to the exterior of the telescope. The nozzles protruded less than 1 cm into the telescope and were well outside the mirror diameter. Contamination of the mirror was produced by silica and alumina dusts propelled into the telescope by special velocity-moderating sources. Cleaning effectiveness was measured by scatter of 10.6-mu laser light at 2 degrees from three spots on the mirror surface. All scatter system components were exterior to the telescope, with only small holes for the passage of laser radiation. The clean mirror BRDF of 5 multiplied by 10-4 sr-1 was raised as high as 3 multiplied by 10-2 sr-1 by the contamination process and subsequently reduced to the original level by one or two seconds of nitrogen snow spraying. Nitrogen snow cleaning under vacuum proved much more effective than carbon-dioxide snow cleaning of the same mirror in air.
Christopher G. Shaw
"Nitrogen snow cleaning inside a large cryogenic telescope", Proc. SPIE 2864, Optical System Contamination V, and Stray Light and System Optimization, (11 November 1996); https://doi.org/10.1117/12.258341
The alert did not successfully save. Please try again later.
Christopher G. Shaw, "Nitrogen snow cleaning inside a large cryogenic telescope," Proc. SPIE 2864, Optical System Contamination V, and Stray Light and System Optimization, (11 November 1996); https://doi.org/10.1117/12.258341