You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 April 1997Applications of a spatial extension to CIELAB
We describe computational experiments to predict the perceived quality of multilevel halftone images. Our computations were based on a spatial color difference metric, S-CIELAB, that is an extension of CIELAB, a widely used industry standard. CIELAB predicts the discriminability of large uniform color patches. S-CIELAB includes a pre- processing stage that accounts for certain aspects of the spatial sensitivity to different colors. From simulations applied to multilevel halftone images, we found that (a) for grayscale image, L-spacing of the halftone levels results in better halftone quality than linear-spacing of the levels; (b) for color images, increasing the number of halftone levels for magenta ink results in the most significant improvement in halftone quality. Increasing the number of halftone levels of the yellow ink resulted in the least improvement.
The alert did not successfully save. Please try again later.
Xuemei Zhang, Joyce E. Farrell, Brian A. Wandell, "Applications of a spatial extension to CIELAB," Proc. SPIE 3025, Very High Resolution and Quality Imaging II, (4 April 1997); https://doi.org/10.1117/12.270048