You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 February 1997Modeling and measuring the response times of thin film TiNi
The response time of TiNi has been the subject of several experimental and theoretical investigations over the past decade. One of the principal concerns with this material is the relatively low cycle speeds or operational bandwidth caused by the considerable length of time required to cool the material. In this paper a finite difference model of heat transfer including the latent heat dissipated during the phase transformation is used to predict the bandwidth of thin film TiNi. The film is modeled as a plate subjected to either forced or free convection along the exposed surfaces and clamped to a large thermal mass representative of silicon wafer at the ends of the specimens. Results indicate that both latent heat as well as the relative ratios of the transformation temperatures to ambient temperature strongly influence the bandwidth of the material. Good correlation between the analytical model and test data obtained on a 38 micron wire indicate the model contains the correct assumptions to predict bandwidths. The bandwidth of TiNi thin film are predicted to be on the order of 100 Hz necessary assuming that the transformation temperatures for the film are the same as the bulk material.
The alert did not successfully save. Please try again later.
Ken K. Ho, Peter Jardine, Gregory Paul Carman, Chang-Jin Kim, "Modeling and measuring the response times of thin film TiNi," Proc. SPIE 3040, Smart Structures and Materials 1997: Smart Materials Technologies, (14 February 1997); https://doi.org/10.1117/12.267109