Paper
23 May 1997 Integrated smart actuator containing a monolithic coformed accelerometer
Robert D. Corsaro, Brian H. Houston, Joseph D. Klunder
Author Affiliations +
Abstract
A general need exists for inexpensive finite-area transducer arrays which intrinsically combine acoustic or vibration sensing with area actuation. Such combination transducers are particularly needed in active sound and vibration control and smart-materials applications. Commercial areas of interest include advanced underwater, aerospace or robotic-sensing applications. To be economically attractive they must be relatively simple to manufacture from reasonable cost materials. One promising new technology for such applications is injection-molded 1-3 composite piezo- ceramics, pioneered by Material Systems Inc. This transducer material is well suited for use as the low-cost actuator component of such a smart actuator. The challenge of this study was to design an inexpensive accelerometer which could be injection molded along with the actuator as an interspersed array. This paper describes a monolithic accelerometer which is suitable for fabrication by injection-molding as an integrated co-formed actuator component. Experimental results are presented for actuator/accelerometer arrays and issues related to the design and use of accelerometers in close proximity to an actuator are discussed.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Robert D. Corsaro, Brian H. Houston, and Joseph D. Klunder "Integrated smart actuator containing a monolithic coformed accelerometer", Proc. SPIE 3044, Smart Structures and Materials 1997: Industrial and Commercial Applications of Smart Structures Technologies, (23 May 1997); https://doi.org/10.1117/12.274683
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Sensors

Prototyping

Acoustics

Composites

Electrodes

Transducers

Back to Top