You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 July 1997Remote performance prediction for infrared imaging of buried mines
IR imagers are being investigated by several groups for use in landmine detection. The ability to predict detection performance is necessary to establish confidence for single sensor systems or to allow appropriate weighting of detector output for data fusion algorithms in multiple sensor systems. Preliminary studies had shown that the in-ground vertical temperature gradient was a good indicator of mine/background contrast in IR images if temperature measurements and imager wee collocated and limited data suggested that remote performance monitoring might be possible. To establish practicality of remote monitoring, temperature probes were buried at 5 sites separated by various distance between 30 m and 5.8 km, in asphalt, sand and gravel, both on and off road. Vertical temperature profiles were automatically recorded at all sites simultaneously with IR images of buried thermal IR surrogate mines located at a gravel road site. The in-ground vertical temperature gradient was confirmed to be a practical indicator of the performance of an IR imager, for probes buried in all materials at distances up to almost 6 km from the imager. A five element probe with thermocouples uniformly placed at depths from -3 to -11 cm would be sufficient to predict detection performance.
The alert did not successfully save. Please try again later.
Kevin L. Russell, John E. McFee, Wayne Sirovyak, "Remote performance prediction for infrared imaging of buried mines," Proc. SPIE 3079, Detection and Remediation Technologies for Mines and Minelike Targets II, (22 July 1997); https://doi.org/10.1117/12.280905