You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 September 1997Optimizing the thermal performance of apochromatic glass-liquid optical systems
In the design of high performance optical systems, the goals of superior color correction and reduced cost can be achieved when abnormal dispersion liquids are incorporated into a design. A complicating factor in these designs is the potential for degraded performance due to the significant changes in refractive index of all liquids with temperature (dN/dt). The thermally induced performance changes of glass-liquid systems can be virtually eliminated through a combination of proper liquid selection (i.e. at least two liquids are required: one to provide color correction, and one to provide thermal compensation) and multi-temperature optimization (i.e. zooming in temperature). In this presentation, the required optical and thermal characteristics for the correcting and compensating liquids are developed and the optimization techniques are discussed. Finally, the optical performance of glass- liquid objectives using several correcting and compensating liquid pairs are contrasted with a similar all-glass design.
The alert did not successfully save. Please try again later.
Robert D. Sigler, Maria V. Petrova, Andrei G. Plyukin, Michael N. Tolstoy, "Optimizing the thermal performance of apochromatic glass-liquid optical systems," Proc. SPIE 3129, Zoom Lenses II, (25 September 1997); https://doi.org/10.1117/12.279090