You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 December 1997Charge transport mechanism in transpolyacetylene
Both theoretical and experimental studies in the past have indicated that the charge transport in lightly doped polyacetylene is due primarily to traveling charged solitonic waves along the polymer chain backbone accompanied by hopping from one chain to another. The conductivity in this model is still dictated by a bandgap. The nature of the ground and excited states of the doped system, however, is not fully understood. Previous ab initio calculations on polyenes doped by a single iodine atom have brought out the interesting feature that, while calculations at the Hartree- Fock level lead to the charge-transfer state as the ground state, a correlated calculation, on the other hand, shows it to be an excited state with the ground state showing little charge transfer. Since, however, only polyiodide anions I3-, I5-, etc. are found in solution rather than neutral radicals such as I, I3 etc., inferences based on the calculation employing a single iodine atom are not conclusive. We present here a systematic ab initio study in which the nature of the ground and excited states of polyenes, doped with iodine, are investigated.
The alert did not successfully save. Please try again later.
G. P. Das, A. Todd Yeates, Douglas S. Dudis, "Charge transport mechanism in transpolyacetylene," Proc. SPIE 3145, Optical Probes of Conjugated Polymers, (1 December 1997); https://doi.org/10.1117/12.284156