You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 December 1997Laser action in conducting polymers
We discuss both cooperative radiation and stimulated emission and consider their role in spectral narrowing of luminescent conducting polymers. We argue that cooperative radiation is favored in films with poor optical confinement. On the other hand, directional stimulated emission can be observed in dilute solution and thin films with superior optical confinement. Spectral narrowing in this case can be achieved by increasing either the excitation length or excitation intensity. The optical gain and loss coefficients are measured. Narrow line (approximately 1.5 cm-1) laser emission is observed in cylindrical microcavities formed by thin polymer films coated around glass fibers in the red and green spectral ranges. The cavity quality factors of these plastic lasers are mainly determined by selfabsorption and estimated to be about 5000.
The alert did not successfully save. Please try again later.
Sergey V. Frolov, Maxim N. Shkunov, Z. Valy Vardeny, Masanori Ozaki, Katsumi Yoshino, "Laser action in conducting polymers," Proc. SPIE 3145, Optical Probes of Conjugated Polymers, (1 December 1997); https://doi.org/10.1117/12.295528