You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 December 1997Ultrafast femtosecond relaxation processes in luminescent and nonluminescent conducting polymers
We have employed the time-resolved photomodulation (PM) technique to study the photoexcitation dynamics of a luminescent (Si-PT) and nonluminescent (s-(CH)x) conducting polymers in the low signal limit. In each polymer, we identify two exponential decay processes in the PM decay, with characteristic time constants T1 and T2, where T1 is of order 1 ps and T2 depends on the specific polymer; T2 in Si-PT is about 50 ps, whereas T2 in s-(CH)x is about 5 ps. The difference in T2 is tentatively attributed to radiative and non-radiative recombination kinetics, respectively. We also found that the PM decay does not show any obvious temperature and intensity dependences, whereas the polarization memory decay is longer at low temperatures.
The alert did not successfully save. Please try again later.
Jiandong D. Huang, Sergey V. Frolov, Z. Valy Vardeny, W. Chen, Thomas J. Barton, R. Sugimoto, Masanori Ozaki, Katsumi Yoshino, "Ultrafast femtosecond relaxation processes in luminescent and nonluminescent conducting polymers," Proc. SPIE 3145, Optical Probes of Conjugated Polymers, (1 December 1997); https://doi.org/10.1117/12.284153