You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 April 1998Amplification of light in sol-gel-based Nd-glass waveguides
Integrated optic planar waveguides fabricated by sol-gel method by doping Neodymium (Nd3+) in glass were studied for gain properties. To our knowledge, this is the first time that a theoretical model based on atomic susceptibility (χas) is applied to the study of sol- gel based Nd-glass waveguide amplifier. Single pass amplification through these waveguides using this theory correlates well with the experimental results. As we see a strong dependence of χas in the observed gain coefficient, it is also possible to extend this theory to the case of inhomogeneously distributed Nd-atomic clusters in the gain medium. Studies on the absorption spectra of the samples showed a strong peak at λ equals 585 nm, which was used as the wavelength for pumping the waveguide. We note that a net gain of over 15 dB is achievable over a few cm's of the waveguide, assuming a homogeneous dispersion of the dopant ions in the medium. The precursors for the sol were TEOS (Tetraethyl orthosilicate) and TPOT (Titanium(IV) isopropoxide) in the ratio of 4:1 and Nd2O3 was used as the dopant. The concentration of the Nd3+ in the waveguide was 2.5 at. %. On a clean glass substrate, with typical dimensions of 2 cm x 1 cm, spincoated films comprising of multi-layers, produced a thickness of approximately 4 micrometers and a refractive index change of 0.0476 as revealed by the m-line measurements using the prism coupling technique. The samples supported two modes at λ=633 nm.
The alert did not successfully save. Please try again later.
S. R. Natarajan, Anand V. Ramamurthi, Ananth Selvarajan, M. Muthuraman, K. C. Patil, "Amplification of light in sol-gel-based Nd-glass waveguides," Proc. SPIE 3280, Rare-Earth-Doped Devices II, (15 April 1998); https://doi.org/10.1117/12.305397